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1).Introduction
The traditional expostulation of the statistical mechanics of non-ideal gases

starts with the fugacity expansion of the grand potential
-}
=2 q)

introduces the concept of reducible cluster coefficients bn via the activity expansion

P - . )

and by use of the thermodynamic relations
BY. - g & Ne= (2 tn2)
s ma Ne WU e TV

obtains the density expansion of the pressure

B - pa- SCwi-1)8,0D"

For a one species gas the virial expansion was derived by Kahgrising the
Lagrange-Burmann inversion formula. A modern treatment for the multispecies gas is given
by Friedmaﬁfhtilizfng generating functions to count Hussimi tree§51The relationship betwee
the b and the n body partition functions Q (eigther classical or quantum mechanical),
and more importantly between the 1rreduc1b1e cluster coefficients B and the reducible
cluster coefficients bn ;were first given by Mayer:sgnd Kﬂpatnci for a one species
gas by involved combinatoric countings. The virial expans1on and the b in terms of B
for a multispecies gas was first given by MayeFand Fuchs using extens1ve, 1ntr1cate'—
combinatorics and multivariate complex contour integrations. (The inverse relationship
for the multispecies case has heretofore never been given.)

This heavy reliance on an armada of graph theory,combinatorics and complex
variable analysis unnecessarily complicates the theory. It will be shown here that the
Umbral calculus-the algebra of formal series-is a natural format to use instead. With
it all the relations (both for the single species and multispecies case) are derived from
a simpler unified framework. Unlike manipulations traditionally derived from graph
theory,combinatorics or complex variable analysis, the umbral developement is algebraic
and therefore adaptable to computer algorithms. Furfthermore it is easy to master and
exploit because it employs the Dirac notation familiar from quantum mechanics. Most
of the concepts (dual space, adjoint operators, etc.) carry over unchanged.'

This paper consists of eight parts. In section two we highlight the pertinent
portions of the theory of multivariate umbral calculus. Section three presents an

algebraic derivation of the single and multivariable Lagrange inversion formulas. In



section four the relations between the reducible cluster coefficients and the n  body
partition functions for both a single and multispecies gas is presented from the Umbral
viewpoint. Sections five and six contain the umbral derivation of the virial expansion
and the relations between the reducible and irreducible cluster coefficients for a single
species non-ideal gas,while sections seven and eight are the generalizations encompassing

the multispecies case.



2).Theory
The theory and notation presented here is loose1y based on an excellent

series of articles by Romaﬁ”headers interested in a rigorous developement of the subject
are urged to refer to these. The intention here is to present a quick intuitive grasp of

the necessary tools.

Define Bra space as the space of all formal series in the objects A A Au
of the form '
QE‘.O,
L=tqQ)

Symbols with a bar underneath always denote vector quantities, for example the index
= (aﬂ“'f‘. LI Y LA)

We adhere to the standard shorthand notation .
wy, W .
(At XAY )"'(AA

The vector [Q],called the degree of Q, is equal to i of the lowest nonvanishing term.
Elements in Bra space are denoted by upper case letters. We stress that this is a formal

series because the A}-are not variables. Rather it is intuitive to think of Q as a quantt

state expanded in a set of basis states‘Ai

Ket space is the space of all formal series in the objects x ,xY Xy of the
P X

The vector [q], called the degree of q, is equal to j of the highest nonvanishing term.
Elements in ket space are denoted by lower case letters.
Brackets are defined by the action

<aiiy= 2.' ok, <AbixtD

where the_&i and the x form a biorthogonal set

SAM XY= Sig

Here the vector indexed Kronecher delta is defined by _

Sy = (Bu, )( Stm) . (St“h)

and the connection constants c; are arbitrary at this point but will be chosen later

to advantage.



Bra elements are commutative and associative and satisfy the product theorem
£S = Cx L \ g-¢
<arlX™? 5;: e, CQIXM>CRIXTE

The extension to multiple producté follows easily by induction.
In multivariate umbral calculus our concern is rarely with a single bra
element, say L , but rather with a set of bra elements La’Ly""Lu from which we form

the vector

L= (L“Lf,..-‘L“) |

whose components are of the form

Le= Ae + He

where Ha is eigther zero or whose degree is of magnitude two or more (ihat is, the lowest

nonvanishing term is of the form .n,,,A:' or QuAgAyor the Tike). We call such.objects
delta sets. Delta sets have two important propérties; any formal series in,&l can be
written as a formal series in L} and they have unique compositional inverses.

The composition operation is defined as occuring between a single bra element

v
Fe 2 $ A
and the delta set vector
l;’ (L“L7‘---‘L‘L3
(of which each component is a bra element,ie a formal series in Ai )} and is defined by
the action

Fel = ghk“’

A delta set vector L has a compositional inverse t_which is also a delta set vector.
By compostional inverse we mean -

Le® t- Ag > t'r'L

for all component indices o .
We wish to generalize the idea of the biorthogonality between the vector

powers of the delta set vector A and the vector indexed sequence of ket elements

a.g_! 51

to encompass any delta set vector F. To that end we can uniquely define an associate



sequence to F as a vector indexed sequence of ket elements

i
§a = 2 iﬂslﬁt' 3

Ke~ew

such that
<Erlsadr & B

and which, like the éi ,satisfies the product property

<aR1§:-H= s & <Q 1§ <R F1-x >
T Cg Cyy

By invoking the spanning postulate, which states

I). QEE-I q>= ng | r> for all 1}5 implies g=r

II). <F 1 >=<6G |1 > forall 1 implies F<G

it follows that any bra space element M may be expanded in term of any other delta set

M= 2 <My > L.!'
_ Cx .
This is known as the expansion theorem.
A mapping from the ket element 52 to the ket element fn is accomplished by

a noncommutative operator called the transfer operator, denoted by

fos 144

To each operator in ket space is an adjoint in bra space which maps bra elements into
bra elements. The adjoint is denoted by flipping the labels in the brace. An adjoint

has the property B
<al {Ffr>= <{tjaird

The adjoint of an inverse is the inverse of the adjoint.
The adjoint of the transfer operator has the action

L_-‘._. {%i.‘ A!-

vector L as

and the transfer operator for a composite of two delta set vectors can be expressed as

a product of transfer operators

Pt e {5



It follows that the compositonal inverse to F, which has its own associate sequence

5= {1je

is directly related to F via
. 3 SEEED 4
o Ez2-% c'!-
and so is called the conjugate sequence to F. The relationships between the sequences nd
the delta set vectors are easily summarized diagramaticly :

“””“'*} \“:“‘;“
mm:t‘m\ E A‘muclﬁ! |

Two other operators form the backbone of the umbral calculus. The creation
operator is defined by the action

L
<FeIxkY= <FI{&{x*>
From the product theorem we see that in ket space the operator has the action

jefat= 2 < <cextt> xt
Cy Ctt
Because thecreation operator is commutative and has the property

1455 (1% 0et)-- (115 - 4

we have the specific action

{_A_i! x*= <& X
® CL-%
If we now specify that the connection coefficients c, are given by

e (CeYCe ). . .(Cxa)

lﬂ

2

-

where

Cm = m! ) FOR M20
™ FoR M<O
c-tm-11}

Then 1ike the ordinary derivitive 3  we have
BXO
e Le-l

{%’ix = LleXe FoR {#0



while unlike the ordinary derivitive

{50 =

We choose this convention for its ability to treat formal series of positive and

negative powers on-a unified basis.
We can easily give a criterion for associated sequences in terms of the

action of the creation operator: a sequence fi is and associate sequence to the delta
set vector F if and only if

% |
1. {%'3 Je = f’tﬁ Fi-4 Ean 2.1
I, <A%US D= CLbte 28N 242

_The last important operator, the derishift operator, is defined for delta set
vectors in bra space as having the action

{%'i L!" KrL 5’&

where e, is the unit vector in the o direction. From the expansion theorem we see that
the derishift operator satisfies the Liebnitz rule

{LieRs a({k3n) + (1%i)R
PR3- 2 (HRIm) 3

where the sum on v runs over all component indices. With our choice of the connection
coefficients the derishift operator in ket space has the action

_{L_;-_i Rp = U=-%4i) 27-.""4‘

of shifting the index of the associate sequences.

and the chain rule



3). The Transfer Formula
As a first application we will present the algebraic derivation of the

Lagrange-Burmann formula for the inversion of a series in a single variable as well
as the generalization encompassing the inversion of a set of series, each in many
variables. Readers interested in the standard derivation by complex contour integration

should refer to Whitaker and Watsoﬂughd Good P¥3
These formulas are an immediate consequence in umbral calculus of the
transfer formula, which gives an explicit construction of the associate sequence directly

from a knowledge of the delta set vector:

e {arpiaptt o

aE v dek (437

To prove this theorem we note that the transfer formula trivially satisfies equation (2]
and so we only need show that equation (2.2 ), equivalent to

<OAEREYE [ x2Y = ca 81,

also holds. The proof is easily illustrated for three variables, the generalization to

where

any dimension being apparant.
When only one of the i (0=1,2,3 for our three variable example) is non zero-

say the first component 11 ( there is no loss of generality as the determ1nant will differ

by at most a sign) we have

e s g
e E R AR R R A ¢
LREALEEE ST AL XL AL

where

L ]
-l
Gg = - 'L F"
le
_ It is important to note that we cannot write Fo ]3%Af° as the derivitive of In Fo



becausé the latter does not exist in the sense of a formal series. Thus we have

LRl EICAR SAL A AD LR

where ¢ is the totally antisymmetric Levi-Civitia symbol. Now our expression equals

J1dqds

= 2 &, <IRJT G (BARID(RIRIR) 2 195
- St <6 BRI RAREIRIDT 1x

The first term is zero because the adjoint of the derivitive when acting on x-l

automatically gives zero. The second term is likewise zero because the summand in the
bra is proportional to

KRR R IR ARSI

which is symmetric in any two j's and so gives zefo when summed over the Levi-Civitia

symbol. The same arguments hold when any number of the ia are nonzero.
It is easy to see that when all the i are zero we have

-L h 2 Sue ke + TEWS oF DEGREE MONTDE 2 0
A

5) + SarERRMWM 3<>2

and so
(A, E)Fr= ;‘!"L + TEWMS OF MGHER DECREE MGAMUDE

This shows that

<ARI Y= <gBEH|xt s

which completes our proof.
To obtain the Lagrange formula in one variable we start by using the expansion

theorem to express the bra element F(A) of degree zero ( [F]=0 ) ad
« S <Flted X
F g Cw

Taking the composition
F.tg z‘ <F\lK> (L“.t)

C
yields w



Ftys 2 L <Flea> a®

By in\)oking the transfer formula in the 1imiting case of one variable we get

- Fh ol {EHET A

Here the prime stands for the formal derivitive of the series with respect to A. Taking

adjoints yields
Y C_ L £ <FUTIxy AT
T Ca @

Now cgnsider the terms with k#0 . We have
<SFULASIX S = <P I
-L < CRU™)= Pt I x>

- -4 1, =X -l
_Jk<n.“|1§§x > -\-.\a<FL \ x>

_Ik c-a Redndve \F'L'K)

Now consider the term k=0. We know that
LL" = A™* 4 conetavt + TEMMS OF RCHER DEGREE

SO

<FULTIX™ D= Fuw) Ca
We thus obtain

FEYy= Fooy & g‘ JK Resudve CE/L°%) A% E&n 3.\

Which is seen to be the Lagrange-Burmann formula.



The multivariate formula follows upon expanding F(A) in terms of L, taking
the composition with_t and invoking the transfer formula:

reter form
redys FL <FanLT N > At

Other variants of the inversion theorem, for examplé theorems seven and eight of Good,
follow directly from the transfer formula when one considers the system of equations

Ae = De
F(R)

remembers that (A.D)(D.A) =1 and explicitly writes

(28)= £ dik (G - B 42 W)



4). The Reducible Cluster Coefficients
Our next application is to derive the relation between the reducible cluster

coefficients bn and the n body partition functions from the umbral formalism. This is

alternatively known as Theile's moment-cumulant relations.
Recall from statistical mechanics that the grand partition function is given by

H. 2 et Qpx 1
itl=0 .
where A =exp u; with Uy the chemical potential of the o th species and Q, is the
partition function for i, particles of species a, iy particles of species v,etc.
Following Hill's notation we define
B3 (§,)7 (L) una Ae= S \

. = [ N Y] e H c- r

. Rey Rey | . Vv
Then we can write the grand potential in the suggestive form

s % At H v, bt

if\=0 "ZT" = A= C iw
which defines the reducible cluster coefficients bi . We can ﬁrite.this compactly as
eV? = 14F
where
Ps 2, b A© Fa & E!.._A_.L_
el L] !

For clarity of presentation we will proceed in the case of the single species

gas. Because

<RIX'S= <€ 1> 2 L <o) Ix*S

Kay

we can use the product theorem to obtain

N\ o L & Cs <vrIxX®S<veix™ D> - el >
<F\X > K% K‘. ‘15 CQ‘CA‘--CQ“ |

Remembering that
Zm FOR M0
o " OTHRWISE

|
<yeix" Y= valbn <F\x"'>'i

- O



we have

ﬁi ol Qv YXVB,,) .. (Vb))
where the sum is over positive integer sets j1+j2+...
B.= 2 Z b (OB VR OVBR L.,

: Kal {h‘ hl.\ _"\., h‘\

where the sum is now over positive integer sets {h} with the two restrictions

FMs

|

jk=N. This sum can be rewritten as

h +2h2+3h3+ ....... =N

1

h1+h2+h3+. L l' ..... =k

(We will make similar substitutions often- in following applications.) We see that the
summation over k nullifies the second constraint yielding the familiar result

“’ Vb )“‘ : 1]
_‘zh:,‘ " (_F‘ﬁ 2aN 4.l

The inverse relationship is easily derived using many of the same steps.

We have . . 0 Av) NN
<VPIX® > = < P IXM>e Z D <FRIXTD
Ad '
2. € __':"-___ <EIX®Y <. - <FIX®D
o ‘3 I\t x,! \(,,\....\(,\, :
with the sum over positive integer sets k1+k2 ....kj=N This easily gives

¥ b,
Vb, = l:- 4 e (B) Ez"ﬂ

where the second sum is restricted by the two conditions

hy+2hy+3hg+....=N

h1+h2+h3+ ..... =j



Again the latter restriction is removed by the summation over j. We thus obtain the

familiar result h
he +1 (4 _
Vb, Z (—l){ T Czhe -0 W (%) man 4.2
ing ¢ t -7
t

The generalization to a multispecies gas follows completely analagous steps
and only results in replacing the scalar indices in equations { el ) and (4.2 )
with vector indices and replacing the constraining equation by

éﬂhgf- N



5). One Species Virial Expansion _
In this section we present the virial expansion and introduce the irreducible

cluster coefficients for a single species gas.
Thermodynamic relations tells us that the pressure (divided by kT ) and the

density can be represented by the delta elements
P= byA+ b A% bASE ...
D= AP = AJ%fP = b Atz A"+ 3bA%. ..

Ban 8.

BGy 502:

In all further manipulations we will exbiicit]y use the value b1=1.
The irreducible cluster coefficients Bk have three intimately related

properties. First they are coefficients in the expansicn of the pressure in terms of

the density
P d- LD - %6 D-%80D - ... : s &3

This property is a statement of the expansion theorem

pP= iz <pldx > t)“
x!

ke

with - 4 Pok K1
1 <PldHs= w6 84

Kl « - ‘Ji;.".’ 6y K22

Secondly the reversion of the density ( equation &2 gives the activity A
as a function of density) can always be expressed in the form

A=D oxp - { BD+ $:0" + 3,0%+ . o)

In umbral formalism this property is that the compositional inverse can be expressed as

BON §F

- ne™
Mz 3aA Y B.A% B A% ...

That is
{-I <M\X“>' S“ e 5.4

Finally, by plugging equation ( &8) back into the activity expansion of
the pressure we will obtain again the density expansion of the pressure,equation ( 5.3 ).



In umbral notation this property is expressed as

P.‘B's A"’ &“,At'% B;A’— e o

that is FoR K=4
L < ¥'Se _ : '
¥l Pe Bix®> { - %D 9, Kz2 BN §F
1.4 j '
The equivalence between equations (8M ) and .( @ ) is easily established
because

<ridey = < {37 1133x>
= <1171 387 x>

= <3EFYETAIK > = <reBIxX

To demonstrate the equ1va1ence between equations (SN ) and (S.L) we start
from the relations

0=AJ3%?  Beae™

We first take the composition
A=ved = A (137P)e B = A" 3R] @4 5)

then use the chain rule to find
Fl- (%0 1% - (mm 3 = (eae 13inY 3

and combine the two equations to obtain
1%} Cpe®) = 1-aJ33M

and so
<PlAxy = <PeTIx* > <v.s\4&1x*">-<:,?ﬂy,a' \X**>  mRu¥o

C=2 < A=ALREM IS

S Sw m < WAM) AgExe



= Bpi- ) <MI44§x¥E>
= 8\(,1 = CKk-1) C1=8k,1) <M\Xp‘>

Thus showing the desired equivalence.
We can express the pressure as a function of density in another form by

writing

M= 'Pii SCA)

where
S= % %A+ 8, A%+ b 8sATE ...

is called the Mayer S function.If we start from the definition of density
| Pe 137 oY

=335 (4%30)" ')

= 1337 « 133 A) A'p)

< 435 (0= 0 331 ')

and using the fact that
A= TeD= (REM) D= de
we may substitute

MA'D)=s MeD

e 135 (04§ o

= D-DCMeD) ¥ q?ss"moo)

» D- o (N8I + 43T (Afe)eD

D- DJ}3C6®) ¢+ Sov

-MeoD

and so

D+ SO -~ D{?Bi S



6). The Reducible and Irreducible Cluster Coefficients
To express the irreducible cluster coefficients in terms of the reducible

cluster coefficients for a single species gas we note that

<MIX* = <MeD A s < Imch'D) | 3% JduD>  Fon amo

= <I7 WmM) LAy = <A R4 D) (s>

By the chain rule this becomes

= <Av ({3 ) 4%3070) VA >

Upon invoking the transfer formula we obtain

L e o g er | € 7455 o
= < oy )3 Joto) IS

® W <RI > = AL ooy 1445 xS
and so ’

Bn = ’;.n_ <MmIXNY = - 1,3 '\Jl.< wioy™ IxMD

T6
(This relation was postulated in the appendix of Kilpatricks paper ght heretofore never

derived.) If we now define

F= (3'p) -4
= 2% A+ 35N  + 4Byt ...

giving us

<‘:\*‘S>= i @D b‘ﬂ 4l) F& 4%
o - oTARWsE



Then we have

8 "% #‘. < (Tjﬁ:)“ \Xﬂ)

'—-

= =L L ¢ 2 @ (kDL ¥ |y
6 o GDLKY XS

%

= 2 D™ gl KiuM

Now K=o ML ¥\ ( -b.<F IX >‘)
1 Ny Cw

where the sum is over sets j1.+j2+....jk=N. This is equivalent to

Kl'_i<;v.\x~> - 42:5 L D0, TT ) by, T oo ES4r Dby ]
)
= x|\ & <Z_LJ“‘(3\>D“=<‘1\_>D""..-
ITX S Y S v B it

where the sum is now over sets such that

SEIXHS -oe <FIX¥*>

1h1+2h2+3h3+ ..... =N

h1+h2+h3+ ....... =k

Inserting into our formula for g the summation over k nullifies the second constraint and
‘we are left with the familiar result

he ¢l
Bu= Z‘ ﬁ"\? (n-lE2he) ‘n/ (t.bO""
il nl U =1

Le

The inverse relationship 1is easily derived using the Lagrange inversion formula

( see equation 3.\ with F=A);

=2 L L Tty pf
> 5.1-'c4<5\ > A

Now as



we obtain

pr Z 4 <y IxT > A

inserting

¥=Ae™

we get
ALYz <cd I < eI
= é; o <uEM XS

= = 4* Cat | Py
L4 4 s, oo ones

with the sum over sets p1+p2+....pk=j-1 . This gives us

- 2

Ko

ca-D! (48 ¢).. 8
‘é‘ 4 ra(‘l p‘) G 3;,3

L
¥,

- a:: z Ca-D)! (1&\"‘(1&)"‘
Mg “hel Tl

where the sum in now over sets such that
1h1+2h2+3h3+....=j-1

hy+hy*hat. ... .=k

However the summation over k nullifies the second constraint ,yielding the familiar result

by = 'S‘ :a 1*' « Bw:)h“
hy!




7). The Multispecies Virial Expansion
In this section we introduce the multivariable Mayer S function and derive

the virial expansion for a multispecies gas. For illustrative purposes only certain steps
will be presented for a two or three component gas, the generalization to any number

of species being apparant.
Thermodynamic relations tells us that the pressure (divided by kT ) and the

densities of the individual species'can be represented by the bra elements

P Z brad = Bkl ¢ byt s bAR L byAdy + behy b oo
De= Ae P = A, {}j? _

In all further manipulations we will implicitly use the values Psa =1. Note that the

densities

D= boAu + buAuAy + 2bag A" 3 .. .
Dr= baAv + buAehy ¢ 2bm AY - .-

form a delta set vector and so has a compositional inverse which is also a delta set
vector. Such a compostional inverse can always be written in the form

8@ - AC’WC‘

where the degree magnitude of wc is zero. Now the property unique to our system which

we shall prove is that
P.(w_ = P’t ol
implies

Wet Wary = Wy Wyia

where for shorthand we have adopted the notation Paiysg%_f Pa_ etc.
Y

This being the case we can always write

\N, - e" 4%1'78

where S is the same function for all components o. fhis function is known as the Mayer

S function. Thermodynamic relations also tells us that this function is intimately related

to the excess Helmholtz free energy‘."n



Now to show

S 5
De= Aely —> B’,fA.,e,"‘“"‘s

we note that

\'\'d.‘= Aa 'ﬁ"‘" - (DctA:‘)' _B_ = (Pg)e E

\M‘\"a '* 1CA¢( D‘)' A'd "1 iD.; =‘D¢ 'D\(% ipgs
To express the last term as a compositon we let
-\%73 34 a (e E
thus | n
6= (A% i %)ep= 43 3¢Be)= 13 I

S0 Wery = (D 05):(‘\%,3&‘\" ]
Wi Wy = (v.w,.“.\?s'ih%i
= (ag? 1%&4) 2 |

We thus need only show that the expression
a4 ) 2
A wikd

is symmetric in the arguments o and y . We illustrate this assertion as follows. From

the chain rule we know that

23 (3a3a)4% + (Rgm )]+ (M) dad
134 (3R3m)4%T + (335351 + (1%am) 48]

133 mwm FORIMARS ¢ (3M)4%T



This allows us to form the matrix equation

boe oo | [ 42w 4%Am agga | RIm ARARe AR
R Rl L % R T TR T Wt DR T L YA
0N Anke aam /| 333 A3y 3™

or i'n matrix symbols 1 =E G . Now the matrix & has the property

Pat Ad'P,  Paa Pug k¢« © o©
G = Pa\Y Priv Ay By Py © Ay 4
Paim Prin Pawm ¥ Aa Py 0 0 A,

or in matrix symbo]s G- H U where HT-H is a symmetric matrix.
Now what we have to show is A (E)ia is symmetric 1n the 1nd1ces i and j.

Because

o 1 ik
(=E-)1J ‘(2 )IJ = (det 2) ('1)1 J det E\jij

(where G .;  is the matrix formed by deleting the j th row and i th column of G)we need

Wiy
only show that -1
A; “det G ..
J =l

is symmetric in i and j. We note that because of its structure (ie G =H U ) we have

-1 )

det G = (A i,

- Ji
=)
The final argument is that for a symmetric matrix H iJ =H L that is striking row
i and column j and transposmg is the same as str1k1ng row J and column i. Now because

det U )( det H
=

det F = det( F' )

we obtain our desired symmetry.



From the form of the compositional inverse of the density

-2
‘Bv= Ae 3 h" .Stﬁﬁ

we can proceed to the virial expansion by taking the composition with D

Ae = Dg € ¢ 133802 | o e iR
MV = Inhe + 'Piri S p)

and so for any component indéx U we mﬁy write
1= Z e {37 Cinhes {3, coor)]

Inserting the fact that

D
il LA\

we have

1o 2 (4R3I (3%,37) + Z 133 (0edRf So)- (R.3°ENRd

1e 437 TP 203 Fwen) - &p ]

Because this is true for any u and constrained by the boundary conditions P+0 as D+0
we obtain the unique solution

Pe Zb - £ B 13,3 s + S0

If we 'define the irreducible cluster coefficients Bn by the expansion

]
Sty= 2 By A
w2
we obtain the familiar multispecies virial expansion

P= 20 — Z (nq-1) B BY



8). The Irreducible Cluster Coefficients
We now present the relations between the reducible and irreducible cluster

coefficients for a multispecies gas. We will express the reducible coefficients in terms
of the irreducible in a manner that yields the same results as contained in Fuch'é’haper.
A comparison of the two methods is appropriate. The irreducible coefficients in terms of

the reducible has never been presented before.
Starting with the knowledge

Du* Al —>  Da= AuWa
we invoke the transfer formula to obtain
<Baighye <mddy Y= <acamdwtt It = gA < awwt Pilbrd
Now bécause wo=exp-So where So=;§_fs » that is Sa|y=sy|a’we may write
o

WO AR W) W g Fey)
-1-& - ) -
el | WO adRgew) W R gewn) -

L]
- L]
]

(1= %%%‘Ks c‘d& (__ A& %},S) e'h&. e e

C-BRDE™ (- e L.

- This simpIificatibn of the transfer formula allows us to arrive at the equivalent of
ol .
Fuch's equation 4.5, namely

~0

Reby = 1 <air(cai- AL33EYeST) 13555

Lt

o



To evaluate the right hand side explicitly we use the totally antisymmetric Levi-Civitia
symbol in p dimensions to expand the determinant and then invoke the product theorem to

obtain

UL R AN “i'-‘:i < (8t - 5;41 e e tﬁ>...<(5w'“‘~§ i)dd‘x“

c™
Here the second sum is ovér all sets of vectorsig(i) satisfying

£(1)+£(2)+ _____ E(u)= g-Sa

Now it is easily worked out that

- A U S LN X T S | 2 7ol yt?
< (i _QH}J)Q tix¥D &..‘L<§ Ix¥75-1 <hulife |X® >

. ).
= R0 X U ;e‘ x ¥
-et
.’ Col e cene x> il ko
! C¥d.e '

ﬂh

- ( Sa- ﬁ.){ﬁ"‘“lxb7

with the same result for d1fferent indices with the other factors. This allows us to

write

3 Ak - KUY <eBSixES | et x>
a h = - Cgd

25! ‘?&_ =




Using the product rule we can explicitly compute the factors

<elta iy = 3 L < (nsdf It

Pee VL
y)
= PZ: B 42&i cx <BulX®> | <aslx? >
®
cp'® C P

where the sum is over all sets of vectors g(i) such that

ﬂ(l)m(2)+ ..... +m(p)= k
We can easily reexpress this as

=c 2 Z T CaXMaD)Bare,] "
PPo Jni 2 ho |
m .

where the second sum is now over all sets of integers hm which satisfies the two constraint.

g ha=P )

a
Z ohy = X
a
1"he first sum over p eliminates the first constraint leaving

(9] )
e 1x" > o 2T [ edtaBpg]™
oy g 8 ha )

®) _ )
é Ehg-f



7}
Inserting this result into our formula for the b] yields Fuch's equations 3.21 and
3.22, namely

m

= 4 i Gu-Lgmie ) U o Bawe]"
'{\ﬁ w0 h'ﬂ!

with the sum over all sets of integers hm(a) satisfying

5w v

To express the irreducible cluster coefficients in terms of the reducibie

we again start from the knowledge

b'o = Ar C—sr Pe™ Acfoe

where S o=i 9 }S and Po ={a ;P . For notational convenience we define the vector
o

P= (PyuP P

We must implicitly remember that this vector is not a delta set vector.
By taking the composition

Ag= Dr oD = (Ac€ " )ed = D, 'R

we find

<8eoD 1AL S = <D 4>

Invoking the transfer formula leads to

<8 lXEVe <tmPr A AR P FE I XED



We may simplify the transfer formula because PGIY =PY|a allows us to write

aanrtt - |CERDEY gD
CERDYT e et

= AR G- A 31 e ]

Following the same steps used in der1v1ng the inverse relation we obtain

=O«N Rl
Wot1) By, = Z! ak (s - x{“\ <P"‘lx_‘> ...<a:‘“lX‘°°><M,lx ”>

Cyx0 C 5‘0 C
The summation is over all sets of vectors_g( ) such that '

1(.(0)+_k.(1)+_k.(2)+' . .-Is(u)_-_g

while the indices i-and j in the determinant run from 1 to u.
Each of the 1nd1v1dua1 brackets are also calculable from the product rule,
for example

<R HIXS = L <cOergyH1x5S
&

Cx

= é -n" (2g4m-i)\ <R.;"l \XE>
nee (2-D mt cn

= g D" (Ream)) s! <xq\5"°> <g;\x“-’-m>
heo @M W o e

with '_ﬂ(l)fﬂ(2)+....fﬂ(m)55



Familiar manipulations yield the result

-q E@ -2 h\:) ) T)) ‘ h?
<KL xED> <« 2 D (at 2Fe D! T ) breey ]
L @Dt T hpl

C K\Q

with the sum restricted over integer sets such that

@ _
é tk: = 15

Likewise we find

<B XD o £ DT (o)) T teesdbrre] T
Cyw» %‘“5 - L hgl

" s the = ¥

Although quite complicated these results when inserted into equation ( g, )
give the desired explicit relation between the Bn in terms of the ?i



9).Conclusion

It has hopefully been shown that the umbral calculus provides a simple
method of obtaining quite complicated results. Doubtless the tools of umbral calculus
may present simpler forms of the relations between the multispecies Bn and bn than
those originally derived by Fuchs or presented here, but this has not been pursued.
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